2025/09/26 17:57 シラバス参照

● シラバス参照

講義名	AI活用とデータエンジニアリング I		
講義開講時期	秋期	講義区分	講義
基準単位数	2		
代表曜日	木曜日	代表時限	3 時限
校地	上野キャンパス		
対象学科・年次	人間学部・人文社会科学部・看護学部 共通教育科目・1年次・2年次		
必須/選択	選択		

担当教員

職種	氏名
専任	◎ 片瀬 拓弥

授業の概要	本授業は、数理・データサイエンス・AI講座(MDASH応用基礎レベル)の対象科目である。応用基礎レベルは、リテラシーレベルの教育を補完的・発展的に学び、データから意味を抽出し、現場にフィードバックする能力、AIを活用し課題解決につなげる基礎能力を修得し、自らの専門分野に数理・データサイエンス・AIを応用するための大局的な視点を獲得することを目標としている。具体的には【データサイエンス基礎】【データエンジニアリング基礎】【AI基礎】の3つの学習分野から構成されている。本科目は、主として、プログラミング基礎、統計学基礎、機械学習基礎、機械学習(教師なし、教師あり)、深層学習、AI構築と運用、生成AIによるコーディング支援などについて演習を通じて学ぶ。講義は、適切な動画教材等を用い、プログラミング言語は、Pythonを使用する。
学習到達目標	具体的な学習到達目標は、以下である。 ①データ駆動型社会の特性を理解し、データサイエンスの基本的な役割と重要性を説明できるようになる。 ②ビッグデータとデータエンジニアリングの概念を理解し、データの収集・処理・管理の基本手法を説明できるようになる。 ③機械学習や深層学習の基本原理を理解し、それらの技術が活用される具体的な事例を説明できるようになる。 ④生成AIの基礎と応用を理解し、適切に活用するスキルを身につける。 ⑤データサイエンス・AIを活用して、専門分野の課題解決に活かせる大局的な視点を獲得する。
成績評価方法	演習課題・レポート (70%) 、ノート提出 (10%) 、AIモデルの精度及び発表会 (10%) 、受講態度 (10%)
課題に対するフィードバック方法	質問やディスカッションは、LMSの掲示板を活用する

アクティブラーニング要素

アクティブラーニング要素	グループワーク プレゼンテーション(発表) リアクションペーパー
--------------	--

授業計画(授業項目・内容/各回の準備学修(予習・復習)について/担当)

回	予復習	内容
第1回	【AI開発演習、形態素解析演習】の 小レポート	オリエンテーション、タイピングスキルアセスメント AI開発演習(AIの学習と推論・評価・再学習【画像認識・音声認識】)、形態素解析 演習(テキストマイニング)
第2回	【プログラミング基礎1】の復習	Pythonプログラミング基礎 1 AIの開発環境と実行環境(2回~15回までの全て) データ型、変数、代入、四則演算、論理演算、順次の構造を持つプログラム
第3回	【プログラミング基礎 2 】の復習	Pythonプログラミング基礎 2 配列、関数、引数、戻り値、分岐・反復の構造を持つプログラムの作成

第4回	【データ分析1】の復習	データ分析 1 (Pythonライブラリの使い方) データ分析ライブラリー (Pandas) の基礎
第5回	【データ分析2】の復習	データ分析 2 (Pythonライブラリの使い方) データ分析ライブラリー (Pandas) の演習
第6回	【データの可視化】の復習	データの可視化(Pyhtonライブラリの使い方) データの可視化ライブラリー (Seaborn) の使い方
第7回	【記述統計量と確率分布】の復習	ライブラリーの総復習及び記述統計量と確率分布 記述統計量(平均、最大、最小、中央値、四分位数、分散、標準偏差)、相関係数、相 関関係、確率分布(正規分布)
第8回	【機械学習基礎】の復習	機械学習プログラミング 1 機械学習基礎、過学習、学習データ、検証データ、ホールドアウト法、交差検証法
第9回	【機械学習(教師なし学習)】の復習	機械学習プログラミング 2 機械学習(教師なし学習)、深層学習、ファインチューニング、転移学習
第10回	【機械学習(教師あり学習)】の復習	機械学習プログラミング 3 機械学習(教師あり学習)
第11回	【AIモデルの構築1】の復習	AIモデルの構築 1 データを使ったモデル実装演習 1 (PBL)
第12回	【AIモデルの構築2】の復習	AIモデルの構築 2 データを使ったモデル実装演習 2 (PBL)
第13回	【AIモデルの構築3(モデル精度の向上)】の復習	AIモデルの構築 3 (モデル精度の向上) データを使ったモデル実装演習 3 (PBL)
第14回	【生成AIによるAIモデルの改良】の 復習	生成AIによるAIモデルの改良(PBL) モデルの改良、モデル精度の向上
第15回	【AIモデル構築の総まとめ】レポート	AIモデル構築の総まとめ 構築したAIモデルの発表会など

準備学修(予習・復習)時間	「各回の準備学修」項目を確認し、講義・演習は4時間(実技・実習は2時間)程度の予習・復習を奨励 します。	
教科書	適宜、資料を配布します。	
参考書・文献	データサイエンス応用基礎(データサイエンス大系)学術図書出版社(2024/8/30) 竹村彰通(編著)数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム完全準拠(2024年2 月改訂版)	
履修条件	・英文タッチタイピングスキルが身についていること ・パソコン操作が円滑に行えること ・データサイエンスとAI、コンピュータサイエンス I を受講済であることが望ましい ・上記2科目が受講済でない学生は、プログラミング I の同時受講を必須とする ・履修希望者が実習教室の座席数を超える場合、実習教室の座席数までとします	

ICT活用

ICT活用	自主学習支援【Google classroomを用いて課題を配布する。】 Google Workspace for Education 関連ツールの利用
	その他のオンラインツールの利用

<u>
 ウィンドウを閉じる</u>